

#### 21415

3 Hours/100 Marks

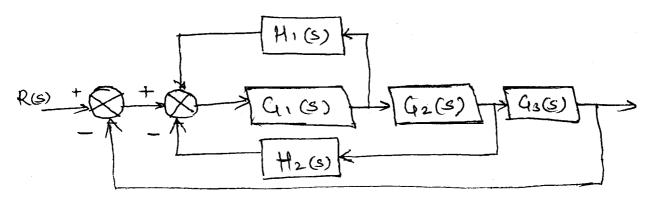
| Seat No. |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|

#### Instructions:

- (1) Illustrate your answers with **neat** sketches **wherever** necessary.
- (2) Figures to the **right** indicate **full** marks.
- (3) Assume suitable data, if necessary.
- (4) **Use** of Non-programmable Electronic Pocket Calculator is **permissible**.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in **Examination Hall**.

**M**ARKS

### 1. A) Attempt any three:


12

- a) Define stability and locate stable and unstable system poles on s-plane.
- b) List various input/output modules of PLC.
- c) Differentiate between open loop and close loop system.
- d) Compare between PI and PD controllers (any four points).

# B) Attempt any one:

6

- a) Explain the need and benefits of PLC in automation.
- b) Derive the transfer function of the following block diagram:





**M**ARKS

### 2. Attempt any two:

16

- a) For a unity feedback system, the open loop T.F.  $G(s) = \frac{25}{s(s+6)}$ . Find out :
  - i) Rise time
  - ii) Peak time
  - iii) Max-overshoot
  - iv) Settling time.
- b) For unity feedback system having  $G(s) = \frac{5 (s + 1)}{s^2 (s + 3) (s + 10)}$  determine type of system, error coefficient and the steady state error for I/P  $r(t) = 1 + 3t + \frac{t^2}{2}.$
- c) Draw ladder diagram for 3 motor operation for following condition:
  - 1) Start push button, start motor M<sub>1</sub>.
  - 2) When motor M<sub>1</sub> is ON after 5 min M<sub>2</sub> is ON and M<sub>1</sub> is OFF?
  - 3) When  $M_2$  is ON after 10 min  $M_3$  is ON and  $M_2$  is OFF?
  - 4) When stop push button is pressed  $M_3$  is OFF?

# 3. Attempt any four:

16

- a) Derive the transfer function of RLC network.
- b) Define scan cycle. Explain its significance in PLC.
- c) Differentiate between AC and DC servo system (four points).



**M**ARKS

d) Find out the range of K for the given system to be stable with

G(s) H(s) = 
$$\frac{K}{s(s+4)(s^2+2s+2)}$$
.

e) Define the term scanning cycle, speed of execution in PLC.

### 4. A) Attempt any three:

12

- a) Explain why derivative action is not used alone. State its one advantage and disadvantage.
- b) Explain memory function and organization of ROM and RAM in PLC.
- c) Explain with diagram sinking and sourcing concept in DC I/P modules.
- d) Define pole and zero. Give its s-plane representation.

### B) Attempt any one:

6

- a) Describe the wiring details of AC output modules of PLC.
- b) Describe PID control action w.r.t. equation and response to error. State one advantage and one disadvantage of it.

### 5. Attempt any two:

16

- a) List and explain the timer instructions of PLC.
- b) Explain with laplace representation standard test inputs. State its need and significance.
- c) Consider the system with characteristic equation  $s^5 + 2s^4 + 3s^3 + 6s^2 + 2s + 1 = 0$ . Determine stability of the system using Routh's criteria.

**M**ARKS

6. Attempt any four:

16

- a) Draw and explain the block diagram of process control system.
- b) State Rouths stability criteria. Describe different cases to find stability of a system.
- c) Draw the ladder diagram for to verify:
  - 1) AND gate
  - 2) NAND Gate logic.
- d) List type of control action. Give one advantage and disadvantage.
- e) List any two rules of block diagram reduction technique.

\_\_\_\_\_